Random recursive hypergraphs

نویسندگان

چکیده

Abstract Random recursive hypergraphs (RRHs) grow by adding, at each step, a vertex and an edge formed joining the new to randomly chosen existing edge. The model is parameter-free, several characteristics of emerging admit neat expressions via harmonic numbers, Bernoulli Eulerian Stirling numbers first kind. Natural deformations RRHs give rise fascinating models growing random hypergraphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

Choosability in Random Hypergraphs

The choice number of a hypergraph H = (V, E) is the least integer s for which for every family of color lists S = {S(v) : v ∈ V }, satisfying |S(v)| = s for every v ∈ V , there exists a choice function f so that f(v) ∈ S(v) for every v ∈ V , and no edge of H is monochromatic under f . In this paper we consider the asymptotic behavior of the choice number of a random k-uniform hypergraph H(k, n,...

متن کامل

Exchangeable random hypergraphs

A hypergraph is a generalization of a graph in which an edge may contain more than two vertices. Hereditary hypergraphs are particularly important because they arise in mathematics as the class of monotone subsets, in statistics as the class of factorial models, in topology as simplicial complexes and in algebra as the free distributive lattice. An exchangeable random hypergraph consists of a p...

متن کامل

Quasi-random hypergraphs revisited

The quasi-random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k-graphs (i.e., k-uniform hypergraphs), an analogous quasi-random class contains various equivalent graph properties including the k-discrepancy property (bounding the number of edges in the generalized induced subgraph determined by an...

متن کامل

Random hypergraphs and algorithmics

Hypergraphs are structures that can be decomposed or described ; in otherwords they are recursively countable. Here, we get exact and asymptotic enumerationresults on hypergraphs by means of exponential generating functions. The number of hy-pergraph components is bounded, as a generalisation of Wright inequalities for graphs :the proof is a combinatorial understanding of the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2023

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/accac0